**Dynamics****Newton’s Laws of Motion:** First law of motion - force and inertia with examples -momentum - second law of motion, derivation of F=ma, mention of spring force F=kx, mention of basic forces in nature - impulse and impulsive forces with examples - second law as applied to variable mass situation - third law of motion - Identifying action and reaction forces with examples - derivation of law of conservation of momentum with examples in daily life - principle of rocket propulsion - inertial and non-inertial frames - apparent weight in a lift and rocket/satellite - problems. **Fluid Dynamics:** Explanation of streamline and turbulent motion - mention of equation of continuity - mention of expressions for PE, KE and pressure energy of an element of a liquid flowing through a pipe - statement and explanation of Bernoulli’s Theorem and its application to uplift of an aircraft sprayer.

Surface Tension: Concept of adhesive and cohesive forces - definition of Surface energy and surface tension and angle of contact - explanation of capillary rise and mention of its expression - mention of application of surface tension to (i) formation of drops and bubbles (ii) capillary action in wick of a lamp (iii) action of detergents. **Work - Power - Energy:** Work done by a force - F.S - unit of work - graphical representation of work done by a constant and variable force - power - units of power - energy - derivation of expression for gravitation potential energy and kinetic energy of a moving body - statement of work - energy theorem - mention of expression for potential energy of a spring - statement and explanation of law of conservation of energy - illustration in the case of a body sliding down on an inclined plane - discussion of special case = 90 degree, for a freely falling body - explanation of conservative and non conservative forces with examples - explanation of elastic and inelastic collisions with examples - coefficient of restitution - problems. **Gravitation:** Statement and explanation of Law of Gravitation - definition of G - derivation of relation between g and G - mention of expression for variation of g with altitude, depth and latitude - statement and explanation of Kepler’s Laws of planetary motion - definition of orbital velocity and escape velocity and mention of their expressions - satellites - basic concepts of geo-stationary satellites, launching of satellites - IRS and communication satellites - brief explanation of Inertial mass and gravitational mass - weightlessness - remote sensing and essentials of space communication - problems.

Concurrent Co-plannar forces: Definition of resultant and equilibrant - statement of law of parallelogram of forces - derivation of expression for magnitude and direction of two concurrent coplanar forces - law of triangle of forces and its converse - Lami’s Theorem - problems. **Heat****Gas Laws: **Statement and explanation of Boyle’s Law and Charles’ Law - definition of Pressure and Volume Coefficient of a gas - absolute zero - Kelvin scale of temperature - mention of perfect gas equation - explanation of isothermal and adiabatic changes - mention of Van-der-Waal’s equation of state for real gases. **Mode of heat transfer:** Conduction of heat - steady state - temperature gradient - definition of coefficient of thermal conductivity - basic concepts of convection of heat - radiation - properties of thermal radiation - radiant energy - definition of emissivity and absorptivity - perfect black body - statement and explanation of Kirchhoff’s Law. Newton’s Law of cooling - Stefan’s Law - Wien’s Displacement and Planck’s Law - qualitative explanation of Solar Constant and surface temperature of sun - principle and working of total radiation pyrometer - problems. **Geometrical Optics****Waves:** Waves around us - brief note on light waves, sound waves, radio waves, micro waves, seismic waves - wave as a carrier of energy - classification of waves. (i) based on medium - mechanical and electromagnetic waves (ii) based on vibration of particles in the medium - Longitudinal & Transverse waves - one, two & three dimensional waves with example - definition of wave amplitude, wave frequency, wave period, wavelength and wave velocity - concept to establish the relation between pathl of phase of a wave - derivation v=f difference and phase difference - definition of a progressive wave - and its characteristics - derivation of equation of a progressive wave - different forms of a progressive wave equation - definition of wave intensity - mention of expression of wave intensity and its unit - statement and explanation of principles of superposition of waves with examples - problems. **Sound: **Properties of sound - speed of sound in a gas - explanation of Newton’s Formula for speed of sound - correction by Laplace - Newton - Laplace Formula - discussion of factors affecting speed i.e. pressure, temperature, humidity and wind - definition of sound intensity - explanation of loudness and its unit - definition of intensity level and its unit - mention of relation between intensity and loudness - distinction between noise and musical note - characteristics of a musical note - phenomenon of beats and its theory - application of beats (i) to find the frequency of a note (ii) to tune the musical instruments -Doppler Effect - derivation of expression for apparent frequency in general case and discussion to special cases - qualitative comparison of Doppler Effect in sound and light - problems. **Refraction at a plane surface: **Refraction through a parallel sided glass slab - derivation of expressions for lateral shift and normal shift (object in a denser medium) - total internal reflection and its applications -optical fibers and its application in communication - problems.

Refraction through a prism: Derivation of expression for the refractive index in terms of A and D -dispersion through a prism - experimental - arrangement for pure spectrum - deviation produced by a thin prism - dispersive power - mention of condition for dispersion without deviation - problems. **Refraction at a spherical surface:** Derivation of the relation - connecting n,u,v and r for refraction at a spherical surface (concave towards a point object in a denser medium) derivation of lens maker’s formula -power of a lens - magnification - derivation of expression for the equivalent focal length of combination of two thin lenses in contact - mention of expression for equivalent focal length of two thin lenses separated by a distance - problems. **Physical Optics****Introduction to Theories of Light:** A brief explanation of Newton’s corpuscular theory, Huygen’s wave theory and Maxwell’s electromagnetic theory - mention of expression for o, qualitative explanation of Hertz’s experiment – brief eom speed of light C=1/ explanation of Planck’s quantum theory of radiation -dual nature of light.

Interference: Explanation of the phenomenon theory of interference - derivation of conditions for constructive and destructive interference.

Young’s Double-slit Experiment, derivation of expression for fringe width - qualitative explanation of interference at thin films and Newton’s rings - problems. **Diffraction:** Explanation of the phenomenon - distinction between Fresnel and Fraunhoffer Diffraction -qualitative explanation of diffraction at single slit and analysis of diffraction pattern (Fraunhoffer type) - qualitative explanation of plane diffraction grating at normal incidence - limit of resolution - resolving power - Rayleigh’s Criterion - definition and mention of expression for resolving powers of microscope and telescope - problems. **Polarisation:** Explanation of the phenomenon - representation of polarized and unpolarised light -explanation of plane of polarization and plane of vibration - methods of producing plane polarized light : by reflection - Brewster’s Law, refraction, double refraction, selective absorption - construction and application of polaroids - optical activity - specific rotatory power - construction and working of Laurent’s half shade polarimeter - mention of circularly and elliptically polarized light - problems. **Speed of light:** Michelson’s rotating mirror experiment to determine of light - importance of speed of light. **Electrostatics****Electric charges:** Concept of charge - Coulomb’s Law, absolute and relative permittivity - SI unit of charge. **Electrostatic Field:** Concept of electric field - definition of field strength - derivation of expression for the field due to an isolated change, concept of dipole - mention of expression for the field due to a dipole -definition of dipole moment - mention of expression for torque on a dipole - explanation of polarization of a dielectric medium - dielectric strength - concept of lines of force and their characteristics - explanation of electric flux - statement and explanation of Gauss theorem and its applications to derive expressions for electric intensity (a) near the surface of a charged conductor (b) near a spherical conductor - concept of electric potential - derivation of the relation between electric field and potential - derivation of expression for potential due to an isolated charge - explanation of potential energy of a system of charges - problems. **Capacitors:** Explanation of capacity of a conductor and factors on which it depends - definition of capacitance and its unit - derivation of expression for capacity of a spherical conductor - principle of a capacitor - derivation of expression for capacitance of parallel plate capacitor - mention of expression for capacitance of spherical and cylindrical capacitors - derivation of expression for energy stored in a capacitor - derivation of expression for equivalent capacitance of capacitors in series and parallel - mention of uses of capacitors - problems. **Current Electricity****Electric current:** Microscope view of current through conductors (random motion of electrons) - explanation of drift d –n velocity and mobility - derivation of expression for current I = neA deduction of Ohm’s Law - origin of resistance - definition of resistivity - temperature coefficient of resistance - concept of super conductivity - explanation of critical temperature, critical field and high temperature superconductors - mention of uses of superconductors - thermistors and mention of their uses - colour code for resistors -derivation of expression for effective resistance of resistances in series and parallel -derivation of expression for branch currents - definition of emf and internal resistance of a cell - Ohm’s law applied to a circuit -problems. **Kirchoff’s Laws: **Statement and explanation of Kirchoff’s Laws for electrical network - explanation of Wheatstone’s network - derivation of the condition for its balance by applying Kirchoff’s laws - principle of metre bridge - problems. **Magnetic effect of electric current: **Magnetic field produced by electric current - statement and explanation of Biot - Savart (Laplace’s) Law - derivation of expression for magnetic field at any point on the axis of a circular coil carrying current and hence expression for magnetic field at the centre - current in a circular coil as a magnetic dipole - explanation of magnetic moment of the current loop - mention of expression for the magnetic field due to (i) a straight current carrying conductor (ii) at a point on the axis of a solenoid - basic concepts of terrestrial magnetism - statement and explanation of Tangent law -construction and theory of tangent galvanometer - problems. **Mechanical effect of electric current: **Mention of expression for force on a charge moving in magnetic field - mention of expression for force on a conductor carrying current kept in a magnetic field - statement of Fleming’s left hand rule - explanation of magnetic field strength in terms of flux density - derivation of expression for the force between two parallel conductors carrying currents and hence definition of ampere -mention of expression for torque on a current loop kept in an uniform magnetic field - construction and theory of moving coil galvanometer - conversion of a pointer galvanometer into an ammeter and voltmeter -problems. **Electromagnetic Induction: **Statement explanation of Faraday’s laws of electromagnetic induction and Lenz’s Law - derivation of expression for emf induced in a rod moving in a uniform magnetic field - explanation of self induction and mutual induction - mention of expression for energy stored in a coil -explanation of eddy currents - alternating currents - derivation of expression for sinusoidal emf - definition of phase and frequency of ac - mention of the expression for instantaneous, peak, rms, and average values - derivation of expression for current in case of ac applied to a circuit containing (i) pure resistor (ii) inductor (iii) capacitor - derivation of expression for impedance and current in LCR series circuit by phasor diagram method - explanation of resonance - derivation of expression for resonant frequency - brief account of sharpness of resonance and Q-factor - mention of expression for power in ac circuits - power factor and wattless current - qualitative description of choke -basic ideas of magnetic hysteresis - construction and working of transformers - mention of sources of power loss in transformers - ac meters - principle and working of moving iron meter - qualitative explanation of transmission of electrical power - advantages of ac and dc - problems. **Atomic Physics****Introduction to atomic physics: **Mention of the types of electron emission - description and theory of Dunnington’s method of finding e/m of an electron - explanation of types of spectra: emission and absorption spectra - brief account of Fraunhoffer lines - qualitative explanation of electromagnetic spectrum with emphasis on frequency.

Photo electric effect: Explanation of photo electric effect - experiment to study photo electric effect - experimental observations - Einstein’s photo electric equation and its explanation - principle and uses of photo cells: (i) photo emissive (ii) photo voltaic (iii) photo conductive cells - problems. **Dual nature of matter: **Concept of matter waves - arriving at the expression for de Brogile Wave length - principle and working of G.P. Thomson’s experiment - principle of Electron Microscope - Scanning Electron Microscope Transmission Electron Microscope and Atomic -Force Microscope. **Bohr’s Atom model: **Bohr’s atomic model for Hydrogen like atoms - Bohr’s postulates - arriving at the expressions for radius, velocity, energy and wave number - explanation of spectral series of Hydrogen -energy level diagram - explanation of ionization and excitation energy - limitations of Bohr’s theory -qualitative explanation of Sommerfeld & Vector atom models - problems. **Scattering of light: **Explanation of coherent and incoherent scattering - blue of the sky and sea - red at sunrise and sunset - basic concepts and applications of Raman effect. **Lasers: **Interaction between energy levels and electromagnetic radiation - laser action - population inversion - optical pumping - properties of lasers - construction and working of Ruby laser - mention of applications of lasers - brief account of photonics. **Nuclear Physics: **Characteristics of nucleus - qualitative explanation of liquid drop model - qualitative explanation of nuclear magnetic resonance (NMR) and its applications in medical diagnostics as MRI -nuclear forces and their characteristics - explanation of Einstein’s mass - energy relation - definition of amu and eV - arriving at 1amu = 931 Mev - examples to show the conversion of mass into energy and vice-versa - mass defect - binding energy - specific binding energy - BE curve - packing fraction. Nuclear fission with equations - nuclear chain reaction - critical mass - controlled and un-controlled chain reactions - types of nuclear reactors and mention of their principles - disposal of nuclear waste. Nuclear fusion - stellar energy (carbon & proton cycles) - problems. **Radioactivity: **Laws of radioactivity (i) Soddy’s group displacement laws (ii) decay law - derivation of N=NOe- explanation of decay constant - derivation of expression for half life - mention of expression for mean life - relation between half and mean life - units of activity: Bequerrel and Curie - Artificial transmutation: Artificial radioactivity - radio isotopes and mention of their uses - brief account of biological effects of radiations and safety measures - problems. **Elementary particles: **Basic concepts of - decay - neutrino hypothesis leptons and hadrons - qualitative explanation of Quarks. **Solid state electronics: **Qualitative explanation of Bond Theory of solids - classification of conductors, insulators and semiconductors - intrinsic and extrinsic semiconductors - p-type and n-type semiconductors - construction and action of pn-junction - forward and reverse biasing - half wave and full wave rectification - function and application of light emitting diodes - photo diode - laser diode - transistors - npn and pnp transistors - action of transistor - npn transistor as an amplifier in CE mode. **Digital Electronics: **Logic gates - AND, OR, NOR & NAND symbols and truth table - applications of logic gates (Boolean equations) - half adder and full adder. **Soft condensed matter physics: **Liquid crystals - classification, thermotropic ( nematic, cholesteric and smectic) and lyotropic liquid crystals - mention of applications of liquid crystals - basic concepts of emulsions, gels & foams.

# MUOET/SMIT-2015: Physics Syllabus

Click here to view the complete syllabus of Physics for **MUOET/SMIT-2015**.

## Comments