Jagran Josh Logo
  1. Home
  2. |  
  3. Board Exams|  

UP Board class 10th mathematics notes on Circle part III

Dec 26, 2017 10:40 IST
  • Read in hindi
UP Board class 10th maths notes
UP Board class 10th maths notes

In this article we are providing UP Board class 10th mathematics notes on chapter 8; circle. This notes will help you to understand the complete chapter in a very easier way and the notes are based on chapter 8 (circle) of class 10th maths subject. Read this article to get the notes, here we are providing each and every notes in a very simple and systematic way.

प्रमेय 1

यदि किसी वृत्त (अथवा सर्वांगसम वृत्तों) के दो चाप सर्वांगसम हों, तो संगत जीवाएँ बराबर होती हैं ।

हम यहाँ सर्वांगसम वृत्तों के चापों से सम्बन्धित प्रमेय की उपपत्ति देंगे और इसके बाद ठीक इसी प्रकार वृत्त के चापों से सम्बन्धित प्रमेय की उपपत्ति भी हम दे सकते हैं ।

chapter eight circle

solved example for circle

UP Board Class 10 Notes For Trigonometry (Chapter Sixth), Part-III

प्रमेय 2

यदि किसी वृत (अथवा सर्वांगसम वृत्तों) की दो जीवाएँ समान हों, तो उनके संगत (लघु, दीर्घ अथवा अर्द्धवृत्ताकार) चाप सर्वांगसम होते हैं|

हम यहाँ सर्वांगसम वृत्तों की जीवाओं से सम्बन्धित प्रमेय की उपपत्ति देंगे और इसके बाद ठीक इसी प्रकार वृत्त की जीवाओं से सम्बन्धित प्रमेय की उपपत्ति हम दे सकते हैं|

दिया है: वृत्त C(O, r) की जीवा PQ और सर्वांगसम वृत्त C(O’, r) की जीवा RS बराबर हैं|

second theorem, circle

derivation for the circle

third derivation, circle

third theorem, circle

वृत्त के केंद्र और जीवा के मध्य बिन्दु को मिलाने वाली रेखा जीवा पर लम्ब होती है|

दिया है: वृत्त C(O, r) की जीवा PQ जिसका मध्य बिन्दु M है|

सिद्ध करना है: OM जीवा PQ पर लम्ब है|

रचना : रेखाखण्ड OP और QO खींचिए | (आकृति)

chapter eight circle

अत: OM जीवा PQ पर लम्ब है|

                                                                                                    उपप्रमेय

वृत्त को दो जीवाओं के लम्ब समद्विभाज़क (Perpendicular Bisector) वृत्त के केन्द्र यर प्रतिच्छेद करते  हैं। आप जानते है कि यदि दो अलग-अलग बिन्दु हों तो वे उनसे होकर जाने वाली एक अद्वितीय रेखा को निर्धारित करते है । अब वृत्त के सन्दर्भ में एक प्रश्न यह उठता है कि कम-से-कम कितने अलग-अलग बिन्दु होने चाहिए जोकि उनसे होकर जाने वाले अद्वितीय वृत्त को निर्धारित कर सकें । एक अद्वितीय वृत्त निर्धारित करने के लिए दो बिन्दु पर्याप्त नहीं होते, क्योंकि दो बिन्दुओं A, B से होकर अनन्त वृत्त जा सकते है । (आकृति) । यदि तीन सरेख बिन्दु (collinear points) लिए जाएँ तो इन तीन बिन्दुओं से होकर कोई वृत्त नहीं जा सकता । क्योंकि, यदि इन तीन संरेख बिन्दओं A, B और C से होकर जाने वाला कोई वृत्त होगा तो केन्द्र से इस रेखा पर डाले गये लम्ब को AB, BC और AC को समद्विभाजित करना पड़ता (प्रमेय) ।

crod of the circle

UP Board Class 10 Mathematics Notes On Statistics (Chapter Fifth), Part-II

DISCLAIMER: JPL and its affiliates shall have no liability for any views, thoughts and comments expressed on this article.

Latest Videos

Register to get FREE updates

    All Fields Mandatory
  • (Ex:9123456789)
  • Please Select Your Interest
  • Please specify

  • ajax-loader
  • A verifcation code has been sent to
    your mobile number

    Please enter the verification code below

Newsletter Signup
Follow us on
This website uses cookie or similar technologies, to enhance your browsing experience and provide personalised recommendations. By continuing to use our website, you agree to our Privacy Policy and Cookie Policy. OK
X

Register to view Complete PDF