Planets around other Stars

Aug 16, 2012, 13:16 IST

Most of the detected exoplanets have revealed their presence by small effects that they have on their star.

 

Planets Around Other Stars 

What are exoplanets?

Throughout recorded history and perhaps before, we have wondered about the possible existence of other worlds, like or unlike our own. The earliest understanding of the solar system showed us that there were indeed other worlds in orbit about our Sun, and steadily growing understanding of their natures shows that all are dramatically different from Earth, and mostly very different from one another. As we came to understand that the stars in the sky are other suns, and that the galaxies consist of billions of stars, it appeared a near certainty that other planets must orbit other stars. And yet, it could not be proven, until the early 1990’s. Then, radio and optical astronomers detected small changes in stellar emission which revealed the presence of first a few, and now many, planetary systems around other stars. We call these planets “exoplanets” to distinguish them from our own solar system neighbors.

What is the difference between a planet and a star?


Stars are huge luminous balls of gas powered by nuclear reactions at their centers. The enormously high temperatures and pressures in the core of a star force atoms of hydrogen to fuse together and become helium atoms, releasing tremendous amounts of energy in the process. Planets are much smaller with core temperatures and pressures too low for nuclear fusion to occur. Thus they emit no light of their own. When you see Venus or Jupiter in the night sky, you're really seeing sunlight reflected by those planets back to you. 

Some planets, like Earth and Mars are solid rocky bodies, but others, like Jupiter and Saturn are mostly gas and liquid. Jupiter, the largest planet in our solar system, is roughly 300 times more massive than the Earth, but only one-thousandth the mass of the Sun. However, had Jupiter been 75 times more massive, it would just have been large enough for the pressures and temperatures at its core to ignite nuclear fusion, and the Earth would have had two Suns in our skies. 

How we know that there are planets around other stars?

Most of the detected exoplanets have revealed their presence by small effects that they have on their star. As planet follows its orbital path, the star follows a complementary motion of its own. This is a tiny effect proportional to the planet/star mass ratio - in the case of the solar system, the Sun moves in synch with the Earth at the speed of a slow dance - currently too slow to readily detect in a distant system. The motion of the Sun in synch with Jupiter, however, is closer to a fast run - and in favorable cases it can be detected by several methods. The motion of the host star can be measured as a shift in its spectrum (the Doppler shift) or as a change in its position on the sky (astrometry). In both cases these are very challenging measurements and require exquisitely sensitive instruments. Exoplanet orbits presumably have random orientations, and in some cases the orbit carries the planet between us and its star. Then the exoplanet might be detected by the decrease in the light from the star. Such transits have been observed, and a number of planets discovered by this method.


Planets Around Other Stars 

What are exoplanets?

Throughout recorded history and perhaps before, we have wondered about the possible existence of other worlds, like or unlike our own. The earliest understanding of the solar system showed us that there were indeed other worlds in orbit about our Sun, and steadily growing understanding of their natures shows that all are dramatically different from Earth, and mostly very different from one another. As we came to understand that the stars in the sky are other suns, and that the galaxies consist of billions of stars, it appeared a near certainty that other planets must orbit other stars. And yet, it could not be proven, until the early 1990’s. Then, radio and optical astronomers detected small changes in stellar emission which revealed the presence of first a few, and now many, planetary systems around other stars. We call these planets “exoplanets” to distinguish them from our own solar system neighbors.

What is the difference between a planet and a star?

 

Stars are huge luminous balls of gas powered by nuclear reactions at their centers. The enormously high temperatures and pressures in the core of a star force atoms of hydrogen to fuse together and become helium atoms, releasing tremendous amounts of energy in the process. Planets are much smaller with core temperatures and pressures too low for nuclear fusion to occur. Thus they emit no light of their own. When you see Venus or Jupiter in the night sky, you're really seeing sunlight reflected by those planets back to you. 

Some planets, like Earth and Mars are solid rocky bodies, but others, like Jupiter and Saturn are mostly gas and liquid. Jupiter, the largest planet in our solar system, is roughly 300 times more massive than the Earth, but only one-thousandth the mass of the Sun. However, had Jupiter been 75 times more massive, it would just have been large enough for the pressures and temperatures at its core to ignite nuclear fusion, and the Earth would have had two Suns in our skies. 

How we know that there are planets around other stars?

Most of the detected exoplanets have revealed their presence by small effects that they have on their star. As planet follows its orbital path, the star follows a complementary motion of its own. This is a tiny effect proportional to the planet/star mass ratio - in the case of the solar system, the Sun moves in synch with the Earth at the speed of a slow dance - currently too slow to readily detect in a distant system. The motion of the Sun in synch with Jupiter, however, is closer to a fast run - and in favorable cases it can be detected by several methods. The motion of the host star can be measured as a shift in its spectrum (the Doppler shift) or as a change in its position on the sky (astrometry). In both cases these are very challenging measurements and require exquisitely sensitive instruments. Exoplanet orbits presumably have random orientations, and in some cases the orbit carries the planet between us and its star. Then the exoplanet might be detected by the decrease in the light from the star. Such transits have been observed, and a number of planets discovered by this method.

 

 

Jagran Josh
Jagran Josh

Education Desk

    Your career begins here! At Jagranjosh.com, our vision is to enable the youth to make informed life decisions, and our mission is to create credible and actionable content that answers questions or solves problems for India’s share of Next Billion Users. As India’s leading education and career guidance platform, we connect the dots for students, guiding them through every step of their journey—from excelling in school exams, board exams, and entrance tests to securing competitive jobs and building essential skills for their profession. With our deep expertise in exams and education, along with accurate information, expert insights, and interactive tools, we bridge the gap between education and opportunity, empowering students to confidently achieve their goals.

    ... Read More

    Get here current GK and GK quiz questions in English and Hindi for India, World, Sports and Competitive exam preparation. Download the Jagran Josh Current Affairs App.

    Trending

    Latest Education News