UP Board कक्षा 10 गणित चेप्टर नोट्स: वृत (चैप्टर-8),पार्ट-III

Dec 26, 2017 10:40 IST
  • Read in English
UP Board class 10th maths notes
UP Board class 10th maths notes

वृत (Circle) यूपी बोर्ड कक्षा 10 गणित का सबसे महत्वपूर्ण अध्यायों में से एक है। यहां दिए गए नोट्स यूपी बोर्ड की कक्षा 10 वीं गणित बोर्ड की परीक्षा 2018 और आंतरिक परीक्षा में उपस्थित होने वाले छात्रों के लिए बहुत उपयोगी साबित होंगे। टॉपिक्स को समझने के लिए इस लेख को पूरा पढ़ें| इस आर्टिकल में हम जो टॉपिक्स कवर कर रहें हैं वह यहाँ अंकित है :

प्रमेय 1

यदि किसी वृत्त (अथवा सर्वांगसम वृत्तों) के दो चाप सर्वांगसम हों, तो संगत जीवाएँ बराबर होती हैं ।

हम यहाँ सर्वांगसम वृत्तों के चापों से सम्बन्धित प्रमेय की उपपत्ति देंगे और इसके बाद ठीक इसी प्रकार वृत्त के चापों से सम्बन्धित प्रमेय की उपपत्ति भी हम दे सकते हैं ।

chapter eight circle

solved example for circle

UP Board कक्षा 10 गणित चेप्टर नोट्स: सांख्यिकी(चैप्टर-5),पार्ट-II

प्रमेय 2

यदि किसी वृत (अथवा सर्वांगसम वृत्तों) की दो जीवाएँ समान हों, तो उनके संगत (लघु, दीर्घ अथवा अर्द्धवृत्ताकार) चाप सर्वांगसम होते हैं|

हम यहाँ सर्वांगसम वृत्तों की जीवाओं से सम्बन्धित प्रमेय की उपपत्ति देंगे और इसके बाद ठीक इसी प्रकार वृत्त की जीवाओं से सम्बन्धित प्रमेय की उपपत्ति हम दे सकते हैं|

दिया है: वृत्त C(O, r) की जीवा PQ और सर्वांगसम वृत्त C(O’, r) की जीवा RS बराबर हैं|

second theorem, circle

derivation for the circle

third derivation, circle

third theorem, circle

वृत्त के केंद्र और जीवा के मध्य बिन्दु को मिलाने वाली रेखा जीवा पर लम्ब होती है|

दिया है: वृत्त C(O, r) की जीवा PQ जिसका मध्य बिन्दु M है|

सिद्ध करना है: OM जीवा PQ पर लम्ब है|

रचना : रेखाखण्ड OP और QO खींचिए | (आकृति)

chapter eight circle

अत: OM जीवा PQ पर लम्ब है|

                                                                                                    उपप्रमेय

वृत्त को दो जीवाओं के लम्ब समद्विभाज़क (Perpendicular Bisector) वृत्त के केन्द्र यर प्रतिच्छेद करते  हैं। आप जानते है कि यदि दो अलग-अलग बिन्दु हों तो वे उनसे होकर जाने वाली एक अद्वितीय रेखा को निर्धारित करते है । अब वृत्त के सन्दर्भ में एक प्रश्न यह उठता है कि कम-से-कम कितने अलग-अलग बिन्दु होने चाहिए जोकि उनसे होकर जाने वाले अद्वितीय वृत्त को निर्धारित कर सकें । एक अद्वितीय वृत्त निर्धारित करने के लिए दो बिन्दु पर्याप्त नहीं होते, क्योंकि दो बिन्दुओं A, B से होकर अनन्त वृत्त जा सकते है । (आकृति) । यदि तीन सरेख बिन्दु (collinear points) लिए जाएँ तो इन तीन बिन्दुओं से होकर कोई वृत्त नहीं जा सकता । क्योंकि, यदि इन तीन संरेख बिन्दओं A, B और C से होकर जाने वाला कोई वृत्त होगा तो केन्द्र से इस रेखा पर डाले गये लम्ब को AB, BC और AC को समद्विभाजित करना पड़ता (प्रमेय) ।

crod of the circle

UP Board कक्षा 10 गणित चेप्टर नोट्स: त्रिकोणमिति (चैप्टर-5),पार्ट-VI

Commented

    Latest Videos

    Register to get FREE updates

      All Fields Mandatory
    • (Ex:9123456789)
    • Please Select Your Interest
    • Please specify

    • ajax-loader
    • A verifcation code has been sent to
      your mobile number

      Please enter the verification code below

    This website uses cookie or similar technologies, to enhance your browsing experience and provide personalised recommendations. By continuing to use our website, you agree to our Privacy Policy and Cookie Policy. OK
    X

    Register to view Complete PDF