ARS/ NET Exam Syllabus for Plant Biochemistry

Here you find syllabus of Plant Biochemistry for ARS and NET Examination which is conducted by Agriculture Scientists Recruitment Board (ASRB) for recruitment as Lecturers/ Assistant Professors/ Agricultural Scientists

Nov 3, 2012, 16:01 IST

Agricultural Scientists Recruitment Board (ASRB) conducted ARS/ NET Examination every year however from 2013 onwards, the test will be conducted separately once (ARS) and twice (NET) a year respectively. Jagranjosh.com provides you the syllabus for Plant Biochemistry for the benefit of the aspirants preparing for ARS and NET Examination 2012.

Unit 1: Basic Biochemistry and Biomolecules
Scope and importance of biochemistry and molecular biology in plants. Structural and functional organization of prokaryotic and eukaryotic cells, viruses and bacteriophages, cell organelles function and their fractionation. Chemical bonding in biological systems, pH and buffers. Thermodynamics and bioenergetics- concept of entropy, and free energy changes in biological reactions, Redox reactions, Role of high energy phosphates. Biomembranes. Classification structure, chemistry, properties and function of carbohydrates, proteins, lipids and nucleic acids. Components of immune system, Prostaglandins.

Unit 2: Intermediary Metabolism
Anabolism, catabolism and their regulation. Metabolism of carbohydrates – glycolitic pathway, HMP pathway, TCA cycle, glyoxylate pathway and gluconeogenesis. Biological oxidation- electron transfer and oxidative phosphorylation. Lipid metabolism, degradation and biosynthesis of fatty acids, ketogenesis and causes of ketosis. Biosynthesis of sterols and phospholipids. Amino acid metabolism – catabolism of amino acids, transamination and deamination, urea cycle, biosyntheisis of amino acids. Conversion of amino acids into bioactive compounds. Metabolism of nucleic acids-degradation and biosynthesis of purines, pyrimidines and nucleotides. Integration of carbohydrate, lipid and amino acid metabolism. Signal transduction mechanisms. Role of G-proteins, cyclic nucleotides and calcium in transduction. Disorders of lipid, carbohydrate, nucleic acid, amino acid metabolism. Inborn errors of metabolism. Secondary metabolites, biotransfermation and over expression.

Unit 3: Enzymes, Vitamins and Hormones
Major classes of enzymes, general properties, kinetics, active site and its mapping, activation energy and transition state. Mechanisms of enzyme action, inhibition and activation. Coenzymes and cofactors. Isoenzymes and immobilized enzymes. Regulation of enzyme activity, allosteric regulation. Multi substrate reactions, kinetic experiments to determine the mechanism of multi substrate reactions. Isolation, purification and measurement of enzyme activity. Enzyme units. Enzyme engineering. Role of enzymes in agriculture, industry, and medicine. Structure, mode of action and metabolic functions of vitamins. Deficiency diseases associated with vitamins. General description of nature hormones and disorders associated with endocrine glands, viz. pituitary, thyroid, adrenal, pancreas and gonads. Peptide and steroid hormones. Phyto hormones – auxins, gibberellins, cytokinins, ethylene, abscisic acid and new plant bio-regulators like SA, Brassino of .

Unit 4: Molecular Biology
Structure of DNA and RNA Replication, transcription and translation. Post-transcriptional and translational modifications. Transcriptional and translation control of prokaryotes and eukaryotes. Features of genetic code in prokaryotes and eukaryotes. Gene expression - operon model, induction and repression, control of gene expression in prokaryotes and eykaryotes. Chloroplant and Mitochondrial genomes. Replication of viruses. Mutagens, oncogenes and carcinogenesis. General principles of recombinant DNA technology, restriction enzymes. Methods of gene transfer-plasmid and viruses as vectors, DNA and protein sequence analysis, oligonucleotide synthesis, genomic and cDNA library construction, site-directed mutagenesis, transposon tagging, chromosome walking. Basics of genome organization and mapping, functional genomics. Gene silencing. Methods for the development of transgenic organisms. Computer application in molecular biology,primer designing, sequence analysis and phylogenetic analysis. Benefits of gene manipulation in agriculture, nanobiotechnology, bio-chips.

Unit 5: Techniques in Biochemistry
Principles of optical, phase contrast, fluorescence and electron microscopy, spectrophotometry, UV and VIS, fluorimetry, turbidometry and atomic absorption spectrophotometry. Radioisotopic techniques – scintillation counters and autoradiography and their application in biological sciences. Flectrophoresis - general principles and application, gel electrophoresis, isoelectric focusing, pulsed field gel electrophoresis, immunoelectrophoresis. Chromatographic techniques - paper, thin layer, column chromatography, GC and HPLC. Centrifugation - principles of sedimentation in various rotors, differential centrifugation, density gradient centrifugation and ultracentrifugation. Cell tissue and organ culture. Cryopreservation, PCR and application of RFLP, RAPD, AFLP, microsatellite and mitochondrial and ribotyping techniques. Southern, Northern and Western blotting, ELISA. Microarray and DNA chips. Preliminary methods of statistical analysis as applied to agricultural data – standard deviation, standard error, ANOVA, correlation and regression.

Unit 6: Biochemistry of Food-grains, Fruits and Vegetables
Fundamentals of nutrition, concept of balanced diet. Nutritional quality of protein and its evaluation. Dietary fibre. Vitamins- biochemical functions and deficiency diseases. Fats and lipids-types of fatty acids and their significance in health. Biochemical composition and food value of various food grains (including cereals, pulses, oil seeds), fruits and vegetables. Biochemistry of fruit ripening, biochemical aspects of post harvest technology, storage and preservation. Biochemical basis of quality improvement of food grains, vegetables and fruits. Antioxidants, nutraceticals. Food toxins and anti-metabolites, food additives, storage proteins.

Unit 7: Photosynthesis
Photosynthesis – photosynthetic pigments, light reactions, photosystems. Photophosphorylation, dark reactions: C3, C4 and CAM pathways. Regulation of Rubisco. Chemisomotic coupling. Carbon cycle and its regulation, Ion fluxes and conformational changes during photosynthesis. Photorespiration. Relationship between photosynthesis, photorespiration and crop productivity. Chloroplasm morphology, structure and biochemical anatomy. Cytosolic and organelle interactions. Nature and exchange of metabolites through translocators. Seed reserve biosynthesis.

Unit 8: Plant Metabolic Processes
Uptake and metabolism of mineral nutrients in plants. Sulphur metabolism. Nitrogen cycle, nitrate and nitrite reduction, denitrification, symbiotic and non-symbiotic nitrogen fixation. Biochemical and physiological role of hydrogenase. Chemoautrotrophy in rhizobia and nitrifying bacteria. Cell cycle. Growth regulation in plants. Signal transduction and phytohormones. Molecular mechanisms of plant growth, hormone action. Role of oligosaccharides and polysaccharides in cellular metabolism. Metabolism of cyanogenic glycosides and glucosinolates.

Unit 9: Plant Molecular Biology
General organization of nuclear, mitochondrial and chloroplast genomes. Genomics and functional genomics. Tissue specific expression of genes. Molecular biology of various stresses – drought, salinity and temperature. Signal transduction and its molecular basis: molecular mechanism of plant hormone action. Structure, organization and regulation of nuclear genes. Genes involved in photosynthesis and nitrogen fixation. Regulation of chloroplast gene expression. Mitochondrial control of fertility. Molecular markers in plants and their uses.

Unit 10: Plant Biotechnology / Genetic Engineering
Totipotency, application of tissue culture for plant improvement, cryopreservation. Protoplasm fusion. General principles of gene cloning. Isolation and characterization of plant genes and promoters. Different methods of gene transfer –direct and vectormediated. Gene silencing. Site directed mutagenesis. Molecular analysis of transformants. Potential applications of plant genetic engineering for crop improvement – insect-pest resistance (insect, viral, fungal and bacterial diseases). Abiotic stress tolerance, herbicide resistance, storage protein quality improvement, increasing shelf- life, oil quality. Biosafety and IPR issues.

Jagran Josh
Jagran Josh

Education Desk

    Your career begins here! At Jagranjosh.com, our vision is to enable the youth to make informed life decisions, and our mission is to create credible and actionable content that answers questions or solves problems for India’s share of Next Billion Users. As India’s leading education and career guidance platform, we connect the dots for students, guiding them through every step of their journey—from excelling in school exams, board exams, and entrance tests to securing competitive jobs and building essential skills for their profession. With our deep expertise in exams and education, along with accurate information, expert insights, and interactive tools, we bridge the gap between education and opportunity, empowering students to confidently achieve their goals.

    ... Read More

    Get here latest School, CBSE and Govt Jobs notification and articles in English and Hindi for Sarkari Naukari, Sarkari Result and Exam Preparation. Empower your learning journey with Jagran Josh App - Your trusted guide for exams, career, and knowledge! Download Now

    Trending

    Latest Education News