CBSE Class 12 Applied Maths Syllabus 2025-26: FREE PDF Download

May 26, 2025, 11:59 IST

CBSE Class 12 Syllabus 2025-26: The Central Board of Secondary Education has made available the syllabus for class 12th that will set the base for the future.  So, students must study properly to perform well in the 12th-class exams. This article provides the latest class 12th syllabus for the academic year 2025-26. Students, teachers and parents can get the Class 12th Applied Maths syllabus here.

CBSE Class 12 Applied Maths Syllabus 2025-26
CBSE Class 12 Applied Maths Syllabus 2025-26

CBSE Class 12 Applied Maths Syllabus 2025-26: The CBSE board has released the revised syllabus for Class 12th Applied Maths for the academic year 2025-26. Students can look at the detailed syllabus, which will have the unit-wise course structure, the question paper design, and the practicals. The paper consists of a total of 100 marks, of which 80 marks are for the theory part and 20 marks are for the practicals or activities. The board has the syllabus aligned with the National Curriculum Framework (NCF) and NEP 2025 guidelines. Students, teachers and parents can download the syllabus PDF for free here. The syllabus is important for all the students who want to pursue their careers in the related field.

CBSE Class 12th Applied Maths Syllabus 2025-26: Course Objectives

  • To develop an understanding of basic mathematical and statistical tools and their applications in the field of commerce (business/ finance/economics) and social sciences.
  • b) To model real-world experiences/problems into mathematical expressions using numerical/algebraic/graphical representations.
  • To make sense of the data by organising, representing, interpreting, analysing, and
  • making meaningful inferences from real-world situations.
  • To develop logical reasoning skills and apply them in simple problem-solving.
  • To reinforce mathematical communication by formulating conjectures, validating
  • logical arguments and testing hypotheses.
  • To make connections between Mathematics and other disciplines.

Also, check

CBSE Class 12th Applied Maths Syllabus 2025-26

Students can check the course structure below: 

No.

Units

Marks

I

Numbers, Quantification and Numerical


Applications

11

II

Algebra

10

III

Calculus

15

IV

Probability Distributions

10

V

Inferential Statistics

5

VI

Time-based data

6

VII

Financial Mathematics

15

VIII

Linear Programming

8

Total

80

Internal Assessment

20

CBSE Class 12th Applied Maths Syllabus 2025-26: Detailed Course Structure

Students can check the detailed course structure in the table below: 

CLASS- XII

Sl.

No.

Contents

Learning Outcomes: Students will be able to

Notes / Explanation

UNIT  1 NUMBERS, QUANTIFICATION AND NUMERICAL APPLICATIONS

Numbers & Quantification

1.1

Modulo Arithmetic

· Define modulus of an integer

● Apply arithmetic operations using modular arithmetic rules

· Definition and meaning

· Introduction to modulo operator

● Modular addition and subtraction

1.2

Congruence Modulo

● Define congruence modulo

● Apply the definition in various problems

● Definition and meaning

● Solution using congruence modulo

● Equivalence class

1.3

Alligation and Mixture

● Understand the rule of alligation to produce a mixture at a given price

● Determine the mean price of a mixture

● Apply rule of allegation

● Meaning and Application of rule of alligation

● Mean price of a mixture

1.4

Numerical Problems

Solve real life problems mathematically

Boats and Streams (upstream and downstream)

● Distinguish between upstream and downstream

● Express the problem in the form of an equation

●  Problems based on speed of stream and the speed of boat in still water

Pipes and Cisterns

● Determine the time taken by two or more pipes to fill or

● empty the tank

● Calculation of the portion of the tank filled or drained by

● the pipe(s) in unit time

Races and Games

● Compare the performance of two players w.r.t. time,

● distance

● Calculation of the time taken/ distance covered /

● speed of each player

1.5

Numerical Inequalities

● Describe the basic concepts of numerical inequalities

● Understand and write numerical inequalities

● Comparison between two statements/situations which can be compared numerically

● Application of the techniques of numerical solution of

● algebraic inequations

 

UNIT-2 ALGEBRA

2.1

Matrices and types of matrices

● Define matrix

● Identify different kinds of matrices. Find the size / order of matrices

● The entries, rows and columns of matrices

● Present a set of data in a matrix form

2.2

Equality of matrices, Transpose of a matrix, Symmetric and Skew symmetric matrix

· Determine equality of two matrices

· Write transpose of given matrix

· Define symmetric and skew symmetric matrix

· Examples of transpose of matrix

· A square matrix as a sum of symmetric and skew symmetric matrix

· Observe that diagonal elements of skew symmetric matrices are always zero

2.3

Algebra of Matrices

● Perform operations like addition & subtraction on matrices of same order

● Perform multiplication of two matrices of appropriate order

● Perform multiplication of a scalar with matrix

● Addition and Subtraction of matrices

● Multiplication of matrices (It can be shown to the students that Matrix multiplication is similar to multiplication of two polynomials)

● Multiplication of a matrix with a real number

2.4

Determinants

● Find determinant of a square matrix

● Singular matrix, Non- singular matrix

● |AB|=|A||B|

● Simple problems to find determinant value

2.5

Inverse of a matrix

· Define the inverse of a square matrix

● Apply properties of inverse of matrices

· Inverse of a matrix using cofactors

· If A and B are invertible square matrices of same size,

i) (AB)−1 = B−1A−1

ii) (A−1)−1 = A

iii) (A′)−1 = (A−1)′

2.6

Solving system of simultaneous equations using matrix method and Cramer’s rule

· Solve the system of simultaneous equations using

i) Cramer’s Rule

ii) Inverse of coefficient matrix

● Formulate real life problems into a system of simultaneous linear equations and solve it using these methods

· Solution of system of simultaneous equations up to three variables only (non- homogeneous equations)

 

UNIT- 3  CALCULUS

Differentiation and its Applications

3.1

Derivatives up to second order

· Determine derivatives up to second order

· Understand differentiation of parametric functions and implicit functions

· Simple problems based on up to second order derivatives

·  Differentiation of parametric functions and implicit functions (upto 2nd order)

3.2

Application of Derivatives

· Determine the rate of change of various quantities

· To find the rate of change of quantities such as area and volume with respect to time or its dimension

3.3

Marginal Cost and Marginal Revenue using derivatives

· Define marginal cost and marginal revenue

● Find marginal cost and marginal revenue

● Examples related to marginal cost, marginal revenue, etc.

3.4

Increasing

/Decreasing Functions

· Determine whether a function is increasing or decreasing

· Determine the conditions for a function to be increasing or decreasing

● Simple problems related to increasing and decreasing behaviour of a function in the given interval

3.5

Maxima and Minima

· Determine critical points of the function

· Find the point(s) of local maxima and local minima and corresponding local maximum and local minimum values

· Find the absolute maximum and absolute minimum value of a function

● Solve applied problems related to optimization of cost, revenue and profit only.

· A point 𝑥 = 𝑐 is called the critical point of f if

f is defined at 𝑐 and

𝑓 ′(𝑐) = 0 or f is not differentiable

at 𝑐

· To find local maxima and local minima by:

i) First Derivative Test

ii) Second Derivative Test

· Contextualized real life problems

Integration and its Applications

3.6

Integration

· Understand and determine indefinite integrals of simple functions as anti- derivative

· Integration as a reverse process of differentiation

· Vocabulary and Notations related to Integration

 

3.7

Indefinite Integrals as family of curves

· Evaluate indefinite integrals of simple algebraic functions by method of:

i) substitution

ii) partial fraction

iii) by parts

· Simple integrals based on each method (non- trigonometric function)

3.8

Definite Integrals as area under the curve

● Define definite integral as area under the curve

● Understand fundamental theorem of Integral calculus and apply it to evaluate the definite integral

● Evaluation of area under simple algebraic curves up to 2nd degree.

3.9

Application of Integration

● Identify the region representing consumer surplus and producer surplus graphically

● Apply the definite integral to find consumer surplus- producer surplus

Problems based on finding

● Total cost when Marginal Cost is given

● Total Revenue when Marginal Revenue is given

● Equilibrium price and equilibrium quantity and hence consumer and producer surplus

Differential Equations and Modeling

3.10

Differential Equations

● Recognize a differential equation

● Find the order and degree of a differential equation

● Definition, order, degree and examples

3.11

Formulating and Solving Differential Equations

● Formulate differential equation

● Verify the solution of differential equation

● Solve simple differential equation using variable separable method only

● Formation of differential equation by eliminating arbitrary constants

● Solution of simple differential equations (direct integration only)

UNIT- 4  PROBABILITY DISTRIBUTIONS

4.1

Probability Distribution

● Understand the concept of Random Variables and its Probability Distributions

● Find probability distribution of discrete random variable

● Definition and example of discrete and continuous random variable and their distribution

4.2

Mathematical Expectation

● Apply arithmetic mean of frequency distribution to find the expected value of a random variable

● The expected value of discrete random variable as summation of product of discrete random variable by the probability of its occurrence.

4.3

Variance

● Calculate the Variance and

S.D. of a random variable

● Questions based on variance and standard deviation

 

4.4

Binomial Distribution

● Identify the Bernoulli Trials and apply Binomial Distribution

● Evaluate Mean, Variance and S.D of a binomial distribution

● Characteristics of binomial distribution

● Binomial formula:

𝑃(𝑟) = 𝑛𝐶 𝑝𝑟𝑞𝑛−𝑟

𝑟

Where 𝑛 = number of trials

𝑝 =probability of success

𝑞 = probability of failure Mean = 𝑛𝑝

Variance = 𝑛𝑝𝑞

Standard deviation =

√𝑛𝑝𝑞

 

4.5

Poison Distribution

● Understand the Conditions of Poisson Distribution

● Evaluate the Mean and Variance of Poisson distribution

● Characteristics of Poisson Probability distribution Poisson formula: 𝑃(𝑋) =

𝜆𝑥𝑒−𝜆

𝑥!

● Mean = Variance = 𝜆

 

4.6

Normal Distribution

● Understand normal distribution is a Continuous distribution

● Evaluate value of Standard normal variate

● Area relationship between Mean and Standard Deviation

● Characteristics of a normal probability distribution

● Total area under the curve = total probability = 1

● Standard Normal Variate:

𝑍 = 𝑥−𝜇,

𝜎

where 𝑥 = value of random

variable,

𝜇 = mean,

𝜎 = S.D

 

UNIT - 5  INFERENTIAL STATISTICS

5.1

Population and Sample

· Define Population and Sample

· Differentiate between population and sample

· Define a representative sample from a population

· Differentiate between a representative and non- representative sample

· Draw a representative sample using simple random sampling

● Draw a representative sample using and systematic random sampling

· Population data from census, economic surveys and other contexts from practical life

· Examples of drawing more than one sample set from the same population

· Examples of representative and non-representative sample

· Unbiased and biased sampling

· Problems based on random sampling using simple random sampling and systematic random sampling (sample size less than 100)

 

5.2

Parameter and Statistics and Statistical Interferences

· Define Parameter with reference to Population

· Define Statistics with reference to Sample

· Explain the relation between Parameter and Statistic

· Explain the limitation of Statistic to generalize the estimation for population

· Interpret the concept of Statistical Significance and Statistical Inferences

· State Central Limit Theorem

● Explain the relation between Population-Sampling Distribution-Sample

· Conceptual understanding of Parameter and Statistics

· Examples of Parameter and Statistic limited to Mean and Standard deviation only

· Examples to highlight limitations of generalizing results from sample to population

· Only conceptual understanding of Statistical Significance/Statistical Inferences

● Only conceptual understanding of Sampling Distribution through simulation and graphs

5.3

t-Test (one sample t-test and for a small group sample)

● Define a hypothesis

● Differentiate between Null and Alternate hypothesis

● Define and calculate degree of freedom

● Test Null hypothesis and make inferences using t-test statistic for one group

● Examples and non- examples of Null and Alternate hypothesis (only non- directional alternate hypothesis)

● Framing of Null and Alternate hypothesis

● Testing a Null Hypothesis to make Statistical Inferences for small sample size

(for small sample size: t- test for one group)

UNIT  6 TIME-BASED DATA

6.1

Time Series

● Identify time series as chronological data

● Meaning and Definition

6.2

Components of Time Series

● Distinguish between different components of time series

● Secular trend

● Seasonal variation

● Cyclical variation

● Irregular variation

6.3

Time Series analysis for univariate data

● Solve practical problems based on statistical data and interpret the result

● Fitting a straight-line trend and estimating the value

6.4

Secular Trend

● Understand the long-term tendency

● The tendency of the variable to increase or decrease over a long period of time

6.5

Methods of Measuring trend

● Demonstrate the techniques of finding trend by different methods

● Moving Average method

● Method of Least Squares

 

UNIT - 7 FINANCIAL MATHEMATICS

7.1

Perpetuity, Sinking Funds

· Explain the concept of perpetuity and sinking fund

· Calculate perpetuity

· Differentiate between sinking fund and saving account

· Meaning of Perpetuity and Sinking Fund

· Real life examples of sinking fund

· Advantages of Sinking Fund

● Sinking Fund vs. Savings account

7.2

Valuation of Bonds

● Define the concept of valuation of bond and related terms.

● Calculate value of bond using present value approach

● Meaning of Bond Valuation

● Terms related to valuation of bond: Coupon rate, Maturity rate and Current price.

● Bond Valuation Method: Present Value Approach

7.3

Calculation of EMI

· Explain the concept of EMI

● Calculate EMI using various methods

· Methods to calculate EMI:

i) Flat-Rate Method

ii) Reducing-Balance Method

· Real life examples to calculate EMI of various types of loans,

purchase of assets, etc.

7.4

Compound Annual Growth Rate

· Understand the concept of Compound Annual Growth Rate

· Differentiate between Compound Annual Growth Rate and Annual Growth Rate

● Calculate Compound Annual Growth Rate

· Meaning and use of Compound Annual Growth Rate

● Formula for Compound Annual Growth Rate

7.5

Linear method of Depreciation

· Define the concept of linear method of Depreciation

· Interpret cost, residual value and useful life of an asset from the given information

● Calculate depreciation

· Meaning and formula for Linear Method of Depreciation

● Advantages and disadvantages of Linear Method

UNIT - 8 LINEAR PROGRAMMING

8.1

Introduction and related terminology

● Familiarize with terms related to Linear Programming Problem

● Need for framing linear programming problem

● Definition of Decision Variable, Constraints,

Objective function, Optimization and Non negative constraints

Practical: Use of spreadsheet: Graphs of an exponential function, demand and supply functions on Excel and study the nature of function at various points, maxima/minima, Matrix operations using Excel

Suggested practical using the spreadsheet

  1. Plot the graphs of functions on Excel and study the graphs to find out the points of maxima/minima
  2. Probability and dice roll simulation
  3. Matrix multiplication and the inverse of a matrix
  4. StockMarket data sheet on Excel
  5. Collect the data on weather, price, inflation, and pollution Analyse the data and make meaningful inferences
  6. Collect data from newspapers on traffic, sports activities and market trends, and use Excel to study future trends

If the students want to get the complete details about the syllabus, then they can check the direct link below: 

Akshita Jolly
Akshita Jolly

Content Writer

Akshita Jolly is a multimedia professional specialising in education, entertainment, fashion, health, and lifestyle news. Holding a degree in Journalism and Mass Communication, she has contributed to renowned media organisations, including the Press Trust of India. She currently serves as Executive – Editorial at Jagran New Media, where she writes, edits, and manages content for the School and News sections of the Jagran Josh (English) portal. She also creates engaging and informative videos for the Jagran Josh YouTube platform, helping to make educational content more accessible and dynamic. Her work has contributed to reaching over 10 million monthly users, reflecting both the impact and scale of her content. For inquiries, she can be reached at akshitajolly@jagrannewmedia.com.
... Read More

Get here latest School, CBSE and Govt Jobs notification and articles in English and Hindi for Sarkari Naukari, Sarkari Result and Exam Preparation. Empower your learning journey with Jagran Josh App - Your trusted guide for exams, career, and knowledge! Download Now

Trending

Latest Education News