Arithmetic Progression (AP) Geometric (GP) and Harmonic Progression (HP): CAT Quantitative Aptitude

Feb 2, 2013, 11:35 IST

Arithmetic Progression, Geometric Progression and Harmonic Progression are interrelated concepts and they are also one of the most difficult topics in Quantitative Aptitude section of Common Admission Test, CAT. This article explains the concept with examples.

Arithmetic Progression, Geometric Progression and Harmonic Progression are interrelated concepts and they are also one of the most difficult topics in Quantitative Aptitude section of Common Admission Test, CAT. We will discuss them one by one.

Arithmetic Progression (AP)
The progression of the form: a, a + d, a + 2d, a + 3d … is known as an AP with first term = a,and common difference = d.

In an AP a, a + d, a + 2d, a + 3d, …, we have:

(i) nth term, Tn = a + (n – 1)d
(ii) Sum to n terms, where l is the last term.
(iii) If a, b, c are in AP, then b is called with arithmetic mean (AM) between a andc. In this case, b =   (a + c).

(iv) If a, a1, a2 … an, b are in AP we say that a1, a2 … anare the narithmetic means between a and b.

(v)  It is convenient to take:three numbers in AP as (a – d), a, (a + d)
four numbers in AP as (a – 3d), (a – d), (a + d), (a + 3d)

Geometric Progression (GP)

The progression of the form: a, ar, ar2, ar3, … is known as a GP with first term = a and common ratio = r
(i) nth term, Tn = arn– 1
(ii) Sum to n terms,   when r< 1 and   when r> 1

(iii) If a, b, c are in GP, then b is the geometric mean (GM) between a andc. In this case, b= √ab .

(iv) If a, a1, a2 … an, b are in GP we say that a1, a2 …an aren geometric means between a and b.

(v) The sum of an infinite GP a, ar, ar2… is .

Harmonic Progression (HP)

The progression a1, a2, a3… is called an HP if ...is an HP.

If a, b, c are in HP, then b is the harmonic mean between a and c.

In this case, b =

Relationship Between the Means of AP, GP and HP

If AM, GM and HM be the arithmetic, geometric and harmonic means between a and b, then the following results hold:


 
Therefore, we can write:

Or GM2 = AM x HM........(iv)

Also, we have:

                                                        (v)


…which is +ve if a and b are +ve; therefore, the AM of any two +ve quantities is greater than their GM.

Also, from equation (iv) we have,  GM2 = AM xHM

Clearly then, GM is a value that would fall between AM and HM and from equation (v) it is known that AM > GM, therefore we can conclude that GM > HM.

In words, we can say that the arithmetic, geometric and harmonic means between any two +ve quantities are in descending order of magnitude.

Jagran Josh
Jagran Josh

Education Desk

    Your career begins here! At Jagranjosh.com, our vision is to enable the youth to make informed life decisions, and our mission is to create credible and actionable content that answers questions or solves problems for India’s share of Next Billion Users. As India’s leading education and career guidance platform, we connect the dots for students, guiding them through every step of their journey—from excelling in school exams, board exams, and entrance tests to securing competitive jobs and building essential skills for their profession. With our deep expertise in exams and education, along with accurate information, expert insights, and interactive tools, we bridge the gap between education and opportunity, empowering students to confidently achieve their goals.

    ... Read More

    Get here latest School, CBSE and Govt Jobs notification and articles in English and Hindi for Sarkari Naukari, Sarkari Result and Exam Preparation. Empower your learning journey with Jagran Josh App - Your trusted guide for exams, career, and knowledge! Download Now

    Trending

    Latest Education News